Unstable Module Presentations for the Cohomology of Real Projective Spaces
نویسندگان
چکیده
There is much we still do not know about projective spaces. We describe here how the mod two cohomology of each real projective space is built as an unstable module over the Steenrod algebra A, or equivalently, over K, the algebra of inherently unstable mod two “lower operations” originally introduced by Steenrod. In particular, to produce the cohomology of projective space of each dimension we consider the well-known minimal set of unstable module generators and construct a minimal set of unstable relations. Three new perspectives we blend for this purpose are: • to focus solely on the two-power Steenrod squares that generate A to understand the A-action in a process we call “shoveling ones”, • to describe every element in a canonical way from a particular unstable generator by composing operations from the algebra K, • to shift attention when studying an unstable A-module to considering and analyzing it directly as an equivalent K-module.
منابع مشابه
Global structure of the mod two symmetric algebra , H ∗ ( BO ; F 2 ) , over the Steenrod Algebra
The algebra S of symmetric invariants over the field with two elements is an unstable algebra over the Steenrod algebra A, and is isomorphic to the mod two cohomology of BO , the classifying space for vector bundles. We provide a minimal presentation for S in the category of unstable A-algebras, i.e., minimal generators and minimal relations. From this we produce minimal presentations for vario...
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملBeyond the Hit Problem: Minimal Presentations of Odd-primary Steenrod Modules, with Application to Cp (∞) and Bu
We describe a minimal unstable module presentation over the Steenrod algebra for the odd-primary cohomology of infinitedimensional complex projective space and apply it to obtain a minimal algebra presentation for the cohomology of the classifying space of the infinite unitary group. We also show that there is a unique Steenrod module structure on any unstable cyclic module that has dimension o...
متن کاملModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملCohomology of aff(1|1) acting on the space of bilinear differential operators on the superspace IR1|1
We consider the aff(1)-module structure on the spaces of bilinear differential operators acting on the spaces of weighted densities. We compute the first differential cohomology of the Lie superalgebra aff(1) with coefficients in space Dλ,ν;µ of bilinear differential operators acting on weighted densities. We study also the super analogue of this problem getting the same results.
متن کامل